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On the morphology of the stress-driven corrugations of the 
phase boundary between the solid and its melt 
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Depanment of Mathematics, Rutgers University, New Brunswick. N J  08903. USA 

Received 24 August 1992 

AbstrscL The predictions of pmsible m patterns of cormgations (the ‘islands’) of the 
unslable Rat phase boundary separating the pre-stressed solid substance and the melt 
a n  carried out on the basis of a quasi-static evolution. The dispersion relations for 
the increment of small disturbances are announced for the model of an isotropic solid 
of arbitrary thicknw and in-plane pre-stresses. It seems that the predictions can be 
checked in various experiments mentioned by Naziem in 1990 and, in panicular, in 
experiments with ‘He similar to those of Torii and Balibar; also, they can be compared 
with numerous aperimenral data related to solid epilaxial films. 

Recently, Tori and Balibar [2] presented several elegant and reliable results pertaining 
to the first quantitative experiment on the equilibrium shape of ‘He crystals under 
non-hydrostatic stress. In particular, ‘. . . above a certain threshold in strain, 
large grooves appear on the crystal surface, in agreement with the instability first 
predicted. . .’ in [3] (as was first announced in [3,4] and demonstrated theoretically in 
[5-71, in the absence of surface tension a flat boundary of non-hydrostatically stressed 
solid of any symmetry is always unstable with respect to ‘mass rearrangement’). 
The other, much more simple and transparent consideration and explanation of the 
instability was proposed in [8,9]. The physical mechanisms of the rearrangement 
can be as different as, for instance, a) melting-freezing or  vaporization-sublimation 
processes at liquid-solid or vapour-solid phase boundaries, b) surface diffusion of 
particles along free or interfacial boundaries, c) adsorption-desorption of the atoms 
in epitaxial crystal growth, etc. This universal instability delivers new insights and 
provides new opportunities in different branches of materials science, a part of 
which is discussed in [lo]. In particular, in addition to successful prediction of the 
corrugations of crystalline solid ‘He, it has allowed an explanation of the phenomenon 
of dislocation-free Stranski-Krastanov pattern of growth of epitaxial films of GaAs on 
Si substrates which are not tractable in the framework of the classical theory of that 
pattern of epitaxial growth (see [ll-131). Regardless of tremendous differences in the 
physical properties of the substances, the ‘corrugation’ of ‘He and the ‘islanding’ of 
growing epitaxial film have a common nature and can be treated in the framework of 
one and the same theory. Moreover, the experimental study of pre-stressed ‘He films 
(in particular, the control of the kinetics of corrugation growth and migration and, 
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also, the opportunity of a direct observation of islanding) is much easier than with 
typical epitaxial films investigated and used in contemporary nanomechanics. Thus, 
further experimental and theoretical studies of the 4He films might well be instructive 
for the simulation and understanding of epitaxial crystal growth and the fracture of 
thin solid films, in addition to low-temperature physics. 

Though conceptually the experiments of [2] have confirmed the predictions of 
[3,9] there are certain distinctions between the experimental set up and dynamic 
regimes investigated in [2], on the one hand, and the two-phase system studied 
theoretically in [3-7, lo], on the other hand. First, we relied on thc investigation of 
positiveness of the second energy variation, which appears to he a specific integro- 
differential quadratic form of the 'naturally' defined fields of allowable variations. 
Actually, this purely static approach to the problem of stability is deeply bound 
up with the dynamic approach resting on the study of the evolution of small 
disturbances. Indeed, singular values of the second energy variation admit the 
transparent physical interpretation: they coincide with the eigenfrequcncies of the 
two-phase heterogeneous system in question with the 'instantaneous' kinetics of 
the phase transformation at the boundary. It seems, however, that neither static 
approximation nor the inertia of the substance (which significantly affects the spectrum 
of oscillation) are the satisfactory theoretical schemes relevant to the experiments 
of Torii and Balibar 12) and others 111. The processes studied in 121 are instead 
quasi-static with a sharp dependence of the kinetics of the irreversible processes 
on temperature. Secondly, in the theoretical studies mentioned above we have 
used ZD elasticity theory, and the 3D approach is becoming an urgent necessity in 
view of the wide opportunities of experiments with solid 4He films (in addition, 
typical misfit stresses in the problems of epitaxy are two-dimensional rather than 
uniaxial). Therefore, in this short note we abandon both of the above-mentioned 
assumptions of our earlier studies and investigate a quasi-static evolution of the pre- 
stressed isotropic elastic film attached to a rigid substrate and bordering its melt. 
However, in order to elucidate the role of non-hydrostatic stresses we ignore here 
the influence of thermal fields and choose the simplest models of the surface tension 
and mass flux: the mass flux across the phase boundary is assumed to be proportional 
to the difference in chemical potential between the two phases (see [SI for the 
rUju,tcu ,"JL"'lL'Y",. 111 L l l O  U " L u  nu .AIIII"".IL~ L l l l  UOy""."" .U.....L".I "L .. 1.. .".- 
of amplification/decay for different surface corrugation, Fourier components, which 
allows one to study morphological patterns of the unstable corrugations (islands) in 
pre-stressed solid films and those possible symmetry changes of the phase (or the 
free) surface morphology which accompany growth of the  film thickness. 

Let us consider a stretched thin solid film of thickness H attached to a rigid 
substrate having a planar matching surface S. The stretches can be produced a) by the 
externally provided displacements of the side-walls in two-phase systems containing 
solid 4He and its melt (as in the experiments of [2]) o r b )  by the misfit in the lattice 
parameters of the epitaxial film and the substrate. In what follows we use the Eulerian 
description of the solid and the summation convention regarding repeated indices. 
We use the notation z i  (the indices i, j, IC, 1 , .  . . take on the values 1, 2, 3) of 
the Cartesian spatial coordinates with the in-plane axes fa (the indices a, b, c, . . . 
take on the values 1, 2). The symbols p, $ and Pj i  are used for the  mass density, 
specific (per unit mass) free bulk energy and the (Cauchy) stress tensor of the solid 
film. We assume that at the upper boundary C, the solid can exchange mass with its 
melt or vapour, which have unaltered pressure p ,  and chemical potential pa. The 

___..:--a : ..-. :c"--:--\ r.. ...:- --I^ _.__^.._ ^^ .LA A:"....-":-" ..a,"*:,." -6 *La ."*- 
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surface energy of the phase boundary C is assumed proportional (with the coefficient 
of surface tension a) to the surface area in the deformed (actual) configuration. 

In what follows we investigate the quasi-static evolution of the above system; 
thus in each of the consequent configurations the standard equilibrium equation and 
boundary conditions have to he satisfied: 

vjpji = o  (la) 
.. 

PI" .  = -pN' 
I 

p ,  - p = - 2 a / R  

where - p  is the normal component of the stress at C (the tangential component 
vanishes at the boundary with liquid or vapour); Ni is the unit normal vector of C 
pointed into the film, R is the mean curvature of the phase boundary. We make use 
of the notation vi and C for velocities of the film particles and the phase boundary, 
respectively, and we assume that the mass flux across the boundary 

J E p ( C  - u i N i )  

is proportional to the jump in the chemical potentials of the phases: 

J = - - (Pa - 1L - P I P )  (2) 

where IC is a positive coefficient. 
Let us consider the equilibrium configuration in which the film is uniformly 

stressed and has a flat phase boundary. We shall investigate thc evolution of small 
disturbances of this configuration and use the 'degree' mark for the equilibrium fields. 
It is convenient to  introduce the tensor 

Dij pilo + @I 

which vanishes identically if the film is hydrostatically stressed (and, thus, it is the 
measure of equilibrium shear stresses in the film). One can easily check that only the 
in-plane components of 

Dij - Dab = T a b  - 

can deviate from zero. In the case of epitaxial films it is natural to call Tab the 
misfit-stress tensor. 

The equations governing the evolution of small disturbances can he derived as 
the result of linearization of the system (I), (2). A routine computation leads to 
the following master equations for small disturbances in the vicinity of uniform 
equilibrium configuration: a) within the film 

C'j%jV,u, = 0 (3) 

b) at the boundary C 

(cijh[v,uk - a 6 i J ~ , v ~ ~ ) , v ~  - D j i Z y v , c  = 0 

6 C l 6 t  = ( a d / a t ) , N J  + (n/p:) ( D ij  Viuj - aV,V"C 

(4) 

(5 )  
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where Cijk' is the tensor of elastic modulae; the symbols 21"' and 6/61 are used for 
the 'shift-tensor' of the embedded surface (the operator of tangential projection on 
the surface) and for the time-derivative along the normal vector to the surface (both 
operators are understood in the sense of [14,7]); the subscript C denotes the limit at 
the phase boundaly. 

We are looking for the solution of equations (3)-(S) of the form 

where z E z3 is the vertical coordinate, k, is the in-plane wave-vector and q is the 
incrementldecrement of the amplitude of the disturbances. 

Plugging (6) into (3)-(5) and the boundary condition at the matching surface and 
making the standard routine computation one can find the required formula of q. In 
particular, in the case of an isotropic film (with shear modulus p and Poisson ratio 
U) and small pre-deformations we arrive at the following dispersion relation: 

2A [ (Tcde,qd)'tanh(h) - ( u / P ) l k l ] )  

x ( 2 A + ( u / p ) ~ k l ( l - u ) [ ( 3 - 4 u ) s i n h ( 2 h ) - 2 h ]  (7) 

where A 4( 1 -U)' + h 2 +  (3-4u) sinh' h. We use the notation Ikl for the modulus 
of the wave-vector ka and the notation e,, qo for unit in-plane vectors parallel and 
orthogonal to IC', respectively; T " ~  E T a b / p  and h Hlkl are the dimensionless 
misfit stresses and thickness, respectively; U is the Poisson ratio. 

In the asymptotic case of infinitely thick film the master formula (7) gives 

The maxima Of q( ka) correspond to the Fourier component3 of corrugations having 
the fastest rate of growth which can be investigated with the help of formulas (7) 
and (8). Formula (7) leads, in particular, to the following value of the critical film 
thickness 

H e n 1  = (9) 

where T,,, is the greater of two principal in-plane misfit stresses. Formula (9) 
generalizes a similar formula for the critical thickness given in [7,10,13,15] established 
originally in the framework of the 2D approach. The investigation of formulas (7) 
and (8) show that at H < Hcnl the film is stable with respect to arbitrary surface 
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corrugations while at H > Herit it becomes unstable. At this initial stage the most 
unstable corrugations are in the shape of ‘trenches’ parallel to the direction of minimal 
in-plane principal stress Tmin. As the film thickens the most unstable mode changes. 
The evolution scenario depends significantly on the misfit stresses: in particular, on 
the dimensionless parameter 

In the case of uniaxial misfit stresses (Is1 = 1) the most unstable corrugations take 
the shape of an array of parallel trenches collinear with the direction of a smaller 
in-plane stress Tmi,, the distance between the trenches diminishes as the thickness 
increases. In the case of the misfit Stresses of a pure shear (when TmaX = -T man . and 
s = 0) the most unstable mode has the shape of an array of squares the size of which 
diminishes with increase in thickness 

At the final stage of growth when the film is infinitely thick the pattern of fastest 
growth corresponds to the array of trenches if the following inequality is valid 

If inequality (10) is violated, then the pattem of fastest growth corresponds to the 
array of rectangular islands; the ratio Ra of legs of the elementary cell is the following 

V l - u + s u ’  

Thus, in the latter case at a certain (second!) critical thickness, the growth pattem 
changes from trench-like to island-like. 

The above-mentioned results can easily be generalized for some other models of 
surface tension and mass-transport mechanisms. In particular, for models with distinct 
surface tension U and surface energy U* (see [8, 161) we arrive at the dispersion 
relations (7) and (8) with the extra term -1kla’ on the RHs. On the other hand, 
multiplying these relations by 1121’ we arrive at the dispersion relations for the case 
of mass transport produced by surface diffusion. All these complications as well as 
other sorts of misfit stresses will be described in detail elsewhere. 

It seems highly desirable to verify the above predictions experimentally with solid 
“He and to compare them with various experimental data pertaining to epitaxial solid 
films. 

I am grateful to P and Yu Grinfelds for their help and to B Coleman, A Khachaturyan, 
H Kojima and J Lebowits for interesting discussions. 
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